Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
2.
Int J Mol Sci ; 23(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1690219

RESUMEN

The development of prophylactic agents against the SARS-CoV-2 virus is a public health priority in the search for new surrogate markers of active virus replication. Early detection markers are needed to follow disease progression and foresee patient negativization. Subgenomic RNA transcripts (with a focus on sgN) were evaluated in oro/nasopharyngeal swabs from COVID-19-affected patients with an analysis of 315 positive samples using qPCR technology. Cut-off Cq values for sgN (Cq < 33.15) and sgE (Cq < 34.06) showed correlations to high viral loads. The specific loss of sgN in home-isolated and hospitalized COVID-19-positive patients indicated negativization of patient condition, 3-7 days from the first swab, respectively. A new detection kit for sgN, gene E, gene ORF1ab, and gene RNAse P was developed recently. In addition, in vitro studies have shown that 2'-O-methyl antisense RNA (related to the sgN sequence) can impair SARS-CoV-2 N protein synthesis, viral replication, and syncytia formation in human cells (i.e., HEK-293T cells overexpressing ACE2) upon infection with VOC Alpha (B.1.1.7)-SARS-CoV-2 variant, defining the use that this procedure might have for future therapeutic actions against SARS-CoV-2.


Asunto(s)
COVID-19/virología , Proteínas de la Nucleocápside de Coronavirus/genética , SARS-CoV-2/fisiología , Replicación Viral/fisiología , Proteínas de la Nucleocápside de Coronavirus/análisis , Células Gigantes/efectos de los fármacos , Células Gigantes/virología , Células HEK293 , Humanos , Límite de Detección , Nasofaringe/virología , Fosfoproteínas/análisis , Fosfoproteínas/genética , ARN sin Sentido/farmacología , ARN Viral , Ribonucleasa P/genética , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Sensibilidad y Especificidad , Aislamiento Social , Carga Viral , Proteínas Viroporinas/genética , Replicación Viral/efectos de los fármacos
3.
ACS Omega ; 6(50): 34945-34953, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1586043

RESUMEN

Numerous reverse transcription polymerase chain reaction (RT-PCR) tests have emerged over the past year as the gold standard for detecting millions of cases of SARS-CoV-2 reported daily worldwide. However, problems with critical shortages of key reagents such as PCR primers and RNA extraction kits and unpredictable test reliability related to high viral replication cycles have triggered the need for alternative methodologies to PCR to detect specific COVID-19 proteins. Several authors have developed methods based on liquid chromatography with tandem mass spectrometry (LC-MS/MS) to confirm the potential of the technique to detect two major proteins, the spike and the nucleoprotein, of COVID-19. In the present work, an S-Trap mini spin column digestion protocol was used for sample preparation prodromal to LC-MS/MS analysis in multiple reactions monitoring ion mode (MRM) to obtain a comprehensive method capable of detecting different viral proteins. The developed method was applied to n. 81 oro/nasopharyngeal swabs submitted in parallel to quantitative reverse transcription PCR (RT-qPCR) assays to detect RdRP, the S and N genes specific for COVID-19, and the E gene for all Sarbecoviruses, including SARS-CoV-2 (with cycle negativity threshold set to 40). A total of 23 peptides representative of the six specific viral proteins were detected in the monitoring of 128 transitions found to have good ionic currents extracted in clinical samples that reacted differently to the PCR assay. The best instrumental response came from the FLPFQFGR sequence of spike [558-566] peptide used to test the analytical performance of the method that has good sensitivity with a low false-negative rate. Transition monitoring using a targeted MS approach has the great potential to detect the fragmentation reactions of any peptide molecularly defined by a specific amino acid sequence, offering the extensibility of the approach to any viral sequence including derived variants and thus providing insights into the development of new types of clinical diagnostics.

4.
Sci Signal ; 14(690)2021 07 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1299215

RESUMEN

Inorganic polyphosphates (polyPs) are linear polymers composed of repeated phosphate (PO4 3-) units linked together by multiple high-energy phosphoanhydride bonds. In addition to being a source of energy, polyPs have cytoprotective and antiviral activities. Here, we investigated the antiviral activities of long-chain polyPs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In molecular docking analyses, polyPs interacted with several conserved amino acid residues in angiotensin-converting enzyme 2 (ACE2), the host receptor that facilitates virus entry, and in viral RNA-dependent RNA polymerase (RdRp). ELISA and limited proteolysis assays using nano- LC-MS/MS mapped polyP120 binding to ACE2, and site-directed mutagenesis confirmed interactions between ACE2 and SARS-CoV-2 RdRp and identified the specific amino acid residues involved. PolyP120 enhanced the proteasomal degradation of both ACE2 and RdRp, thus impairing replication of the British B.1.1.7 SARS-CoV-2 variant. We thus tested polyPs for functional interactions with the virus in SARS-CoV-2-infected Vero E6 and Caco2 cells and in primary human nasal epithelial cells. Delivery of a nebulized form of polyP120 reduced the amounts of viral positive-sense genomic and subgenomic RNAs, of RNA transcripts encoding proinflammatory cytokines, and of viral structural proteins, thereby presenting SARS-CoV-2 infection in cells in vitro.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Polifosfatos/farmacología , SARS-CoV-2/efectos de los fármacos , Administración por Inhalación , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Antivirales/administración & dosificación , Antivirales/química , COVID-19/metabolismo , COVID-19/virología , Células CACO-2 , Chlorocebus aethiops , ARN Polimerasa Dependiente de ARN de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Citocinas/metabolismo , Células HEK293 , Interacciones Microbiota-Huesped/efectos de los fármacos , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Técnicas In Vitro , Modelos Biológicos , Simulación del Acoplamiento Molecular , Nebulizadores y Vaporizadores , Polifosfatos/administración & dosificación , Polifosfatos/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteolisis/efectos de los fármacos , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Homología de Secuencia de Aminoácido , Transducción de Señal/efectos de los fármacos , Células Vero , Replicación Viral/efectos de los fármacos
5.
Diagnostics (Basel) ; 11(2)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1085113

RESUMEN

The COVID-19 pandemic has forced diagnostic laboratories to focus on the early diagnostics of SARS-CoV-2. The positivity of a molecular test cannot respond to the question regarding the viral capability to replicate, spread, and give different clinical effects. Despite the fact that some targets are covered by commercially-available assays, the identification of new biomarkers is desired in order to improve the quality of the information given by these assays. Therefore, since the subgenomic transcripts (sgN and sgE) are considered markers of viral activity, we evaluated these subgenomic transcripts in relation to the genomic amplification obtained using five different commercial CE-IVD tools. Methods: Five CE-IVD kits were compared in terms of their capability to detect both synthetic SARS-CoV-2 viral constructs (spiked in TMB or PBS medium) and targets (N, E, RdRp and Orf1ab genes) in twenty COVID-19-positive patients' swabs. The sgN and sgE were assayed by real-time RT-qPCR and digital PCR. Results: None of the diagnostic kits missed the viral target genes when they were applied to targets spiked in TMB or PBS (at dilutions ranging from 100 pg to 0.1 pg). Nevertheless, once they were applied to RNA extracted from the patients' swabs, the superimposability ranged from 50% to 100%, regardless of the extraction procedure. The sgN RNA transcript was detected only in samples with a higher viral load (Ct ≤ 22.5), while sgE was within all of the Ct ranges. Conclusions: The five kits show variable performances depending on the assay layout. It is worthy of note that the detection of the sgN transcript is associated with a higher viral load, thus representing a new marker of early and more severe infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA